Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immobilized atmospheric particulate matter on leaves of 96 urban plant species.

Identifieur interne : 000329 ( Main/Exploration ); précédent : 000328; suivant : 000330

Immobilized atmospheric particulate matter on leaves of 96 urban plant species.

Auteurs : Samira Muhammad [Belgique] ; Karen Wuyts [Belgique] ; Roeland Samson [Belgique]

Source :

RBID : pubmed:32572747

Descripteurs français

English descriptors

Abstract

Plants provide many ecosystem services in urban environments, including improving ambient air quality. Leaves of plants permit the deposition of particulate matter (PM) and, depending on their leaf traits, PM may be immobilized within the epicuticular wax (EW) layer, on trichomes, on hyphae of fungi, or inside stomatal cavities. In this study, leaves of 96 perennial urban plant species consisting of 45 deciduous broadleaf/needle-like trees, 32 deciduous broadleaf shrubs, 12 evergreen needle/scale-like trees, 5 evergreen broadleaf trees, and 2 climber species were investigated in June and September 2016 to determine the effectiveness of distinct leaf surfaces in PM immobilization after leaf washing treatment. The leaf surfaces were washed vigorously using a vortex shaker. The magnetizable component of accumulated and immobilized PM on the leaf surfaces was estimated using saturation isothermal remanent magnetization (SIRM) of the unwashed and washed leaves, respectively. In June, the washed leaf SIRM of deciduous (broadleaf/needle-like) tree and shrub species (n = 77) ranged between 0.1 and 13.9 μA. In September, the washed leaf SIRM of all investigated plant species (n = 96) ranged between 1.2 and 35.0 μA. Outcomes of this study indicate that leaves of Buddleja davidii, Viburnum lantana, and Sorbus intermedia showed the highest washed leaf SIRM and thus were the most effective in immobilizing PM on their leaf surfaces while leaves of Populus alba, Robinia pseudoacacia, and Abies fraseri with lowest washed leaf SIRM were the least effective. On average, more than half (i.e., 60%) of the magnetic signal still remained after vigorous washing but a large variation exists between species (9-96%). The leaf SIRM of washed leaves of deciduous broadleaf tree and shrub species was significantly higher compared to leaves of evergreen needle/scale-like species. Evidently, the magnetic signal of unwashed leaves was higher than washed ones and higher in September than in June. Leaf traits significantly influenced the magnetic signal of both washed and unwashed leaves: leaves with a high trichome density or high leaf wettability showed a higher unwashed and washed leaf SIRM compared to leaves with no trichomes or low leaf wettability. The effect of epicuticular wax structure types on leaf SIRM was indicated to be only marginally significant. Moreover, also the immobilized fraction of PM was significantly affected by trichome density and leaf wettability, thus substantiating that plant species with high trichome density and/or leaf wettability not only accumulate more PM but are also less prone to PM re-suspension than other species. In general, the results also indicate that leaf SIRM of unwashed leaves can be a good indicator to determine the effectiveness of a plant species in PM immobilization. Plant species effective in immobilizing PM on their leaf surfaces may likely improve ambient air quality when planted in urban environments. However, it is vital that leaves of these plant species (i.e., with high PM immobilization abilities) are carefully recycled as they may be polluted.

DOI: 10.1007/s11356-020-09246-6
PubMed: 32572747


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immobilized atmospheric particulate matter on leaves of 96 urban plant species.</title>
<author>
<name sortKey="Muhammad, Samira" sort="Muhammad, Samira" uniqKey="Muhammad S" first="Samira" last="Muhammad">Samira Muhammad</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium. samira.muhammad@uantwerpen.be.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wuyts, Karen" sort="Wuyts, Karen" uniqKey="Wuyts K" first="Karen" last="Wuyts">Karen Wuyts</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samson, Roeland" sort="Samson, Roeland" uniqKey="Samson R" first="Roeland" last="Samson">Roeland Samson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32572747</idno>
<idno type="pmid">32572747</idno>
<idno type="doi">10.1007/s11356-020-09246-6</idno>
<idno type="wicri:Area/Main/Corpus">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000235</idno>
<idno type="wicri:Area/Main/Curation">000235</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000235</idno>
<idno type="wicri:Area/Main/Exploration">000235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Immobilized atmospheric particulate matter on leaves of 96 urban plant species.</title>
<author>
<name sortKey="Muhammad, Samira" sort="Muhammad, Samira" uniqKey="Muhammad S" first="Samira" last="Muhammad">Samira Muhammad</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium. samira.muhammad@uantwerpen.be.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wuyts, Karen" sort="Wuyts, Karen" uniqKey="Wuyts K" first="Karen" last="Wuyts">Karen Wuyts</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samson, Roeland" sort="Samson, Roeland" uniqKey="Samson R" first="Roeland" last="Samson">Roeland Samson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air Pollutants (analysis)</term>
<term>Ecosystem (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Particulate Matter (analysis)</term>
<term>Plant Leaves (chemistry)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Matière particulaire (analyse)</term>
<term>Polluants atmosphériques (analyse)</term>
<term>Surveillance de l'environnement (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Air Pollutants</term>
<term>Particulate Matter</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Matière particulaire</term>
<term>Polluants atmosphériques</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Environmental Monitoring</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Surveillance de l'environnement</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants provide many ecosystem services in urban environments, including improving ambient air quality. Leaves of plants permit the deposition of particulate matter (PM) and, depending on their leaf traits, PM may be immobilized within the epicuticular wax (EW) layer, on trichomes, on hyphae of fungi, or inside stomatal cavities. In this study, leaves of 96 perennial urban plant species consisting of 45 deciduous broadleaf/needle-like trees, 32 deciduous broadleaf shrubs, 12 evergreen needle/scale-like trees, 5 evergreen broadleaf trees, and 2 climber species were investigated in June and September 2016 to determine the effectiveness of distinct leaf surfaces in PM immobilization after leaf washing treatment. The leaf surfaces were washed vigorously using a vortex shaker. The magnetizable component of accumulated and immobilized PM on the leaf surfaces was estimated using saturation isothermal remanent magnetization (SIRM) of the unwashed and washed leaves, respectively. In June, the washed leaf SIRM of deciduous (broadleaf/needle-like) tree and shrub species (n = 77) ranged between 0.1 and 13.9 μA. In September, the washed leaf SIRM of all investigated plant species (n = 96) ranged between 1.2 and 35.0 μA. Outcomes of this study indicate that leaves of Buddleja davidii, Viburnum lantana, and Sorbus intermedia showed the highest washed leaf SIRM and thus were the most effective in immobilizing PM on their leaf surfaces while leaves of Populus alba, Robinia pseudoacacia, and Abies fraseri with lowest washed leaf SIRM were the least effective. On average, more than half (i.e., 60%) of the magnetic signal still remained after vigorous washing but a large variation exists between species (9-96%). The leaf SIRM of washed leaves of deciduous broadleaf tree and shrub species was significantly higher compared to leaves of evergreen needle/scale-like species. Evidently, the magnetic signal of unwashed leaves was higher than washed ones and higher in September than in June. Leaf traits significantly influenced the magnetic signal of both washed and unwashed leaves: leaves with a high trichome density or high leaf wettability showed a higher unwashed and washed leaf SIRM compared to leaves with no trichomes or low leaf wettability. The effect of epicuticular wax structure types on leaf SIRM was indicated to be only marginally significant. Moreover, also the immobilized fraction of PM was significantly affected by trichome density and leaf wettability, thus substantiating that plant species with high trichome density and/or leaf wettability not only accumulate more PM but are also less prone to PM re-suspension than other species. In general, the results also indicate that leaf SIRM of unwashed leaves can be a good indicator to determine the effectiveness of a plant species in PM immobilization. Plant species effective in immobilizing PM on their leaf surfaces may likely improve ambient air quality when planted in urban environments. However, it is vital that leaves of these plant species (i.e., with high PM immobilization abilities) are carefully recycled as they may be polluted.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32572747</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>29</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Immobilized atmospheric particulate matter on leaves of 96 urban plant species.</ArticleTitle>
<Pagination>
<MedlinePgn>36920-36938</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-020-09246-6</ELocationID>
<Abstract>
<AbstractText>Plants provide many ecosystem services in urban environments, including improving ambient air quality. Leaves of plants permit the deposition of particulate matter (PM) and, depending on their leaf traits, PM may be immobilized within the epicuticular wax (EW) layer, on trichomes, on hyphae of fungi, or inside stomatal cavities. In this study, leaves of 96 perennial urban plant species consisting of 45 deciduous broadleaf/needle-like trees, 32 deciduous broadleaf shrubs, 12 evergreen needle/scale-like trees, 5 evergreen broadleaf trees, and 2 climber species were investigated in June and September 2016 to determine the effectiveness of distinct leaf surfaces in PM immobilization after leaf washing treatment. The leaf surfaces were washed vigorously using a vortex shaker. The magnetizable component of accumulated and immobilized PM on the leaf surfaces was estimated using saturation isothermal remanent magnetization (SIRM) of the unwashed and washed leaves, respectively. In June, the washed leaf SIRM of deciduous (broadleaf/needle-like) tree and shrub species (n = 77) ranged between 0.1 and 13.9 μA. In September, the washed leaf SIRM of all investigated plant species (n = 96) ranged between 1.2 and 35.0 μA. Outcomes of this study indicate that leaves of Buddleja davidii, Viburnum lantana, and Sorbus intermedia showed the highest washed leaf SIRM and thus were the most effective in immobilizing PM on their leaf surfaces while leaves of Populus alba, Robinia pseudoacacia, and Abies fraseri with lowest washed leaf SIRM were the least effective. On average, more than half (i.e., 60%) of the magnetic signal still remained after vigorous washing but a large variation exists between species (9-96%). The leaf SIRM of washed leaves of deciduous broadleaf tree and shrub species was significantly higher compared to leaves of evergreen needle/scale-like species. Evidently, the magnetic signal of unwashed leaves was higher than washed ones and higher in September than in June. Leaf traits significantly influenced the magnetic signal of both washed and unwashed leaves: leaves with a high trichome density or high leaf wettability showed a higher unwashed and washed leaf SIRM compared to leaves with no trichomes or low leaf wettability. The effect of epicuticular wax structure types on leaf SIRM was indicated to be only marginally significant. Moreover, also the immobilized fraction of PM was significantly affected by trichome density and leaf wettability, thus substantiating that plant species with high trichome density and/or leaf wettability not only accumulate more PM but are also less prone to PM re-suspension than other species. In general, the results also indicate that leaf SIRM of unwashed leaves can be a good indicator to determine the effectiveness of a plant species in PM immobilization. Plant species effective in immobilizing PM on their leaf surfaces may likely improve ambient air quality when planted in urban environments. However, it is vital that leaves of these plant species (i.e., with high PM immobilization abilities) are carefully recycled as they may be polluted.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muhammad</LastName>
<ForeName>Samira</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium. samira.muhammad@uantwerpen.be.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wuyts</LastName>
<ForeName>Karen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Samson</LastName>
<ForeName>Roeland</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000393">Air Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000393" MajorTopicYN="N">Air Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052638" MajorTopicYN="N">Particulate Matter</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Epicuticular wax structure types</Keyword>
<Keyword MajorTopicYN="N">Leaf wettability</Keyword>
<Keyword MajorTopicYN="N">Nature-based solutions</Keyword>
<Keyword MajorTopicYN="N">Particle immobilization</Keyword>
<Keyword MajorTopicYN="N">Trichome density</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32572747</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-020-09246-6</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-020-09246-6</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Province d'Anvers</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Anvers</li>
</settlement>
<orgName>
<li>Université d'Anvers</li>
</orgName>
</list>
<tree>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="Muhammad, Samira" sort="Muhammad, Samira" uniqKey="Muhammad S" first="Samira" last="Muhammad">Samira Muhammad</name>
</region>
<name sortKey="Samson, Roeland" sort="Samson, Roeland" uniqKey="Samson R" first="Roeland" last="Samson">Roeland Samson</name>
<name sortKey="Wuyts, Karen" sort="Wuyts, Karen" uniqKey="Wuyts K" first="Karen" last="Wuyts">Karen Wuyts</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000329 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000329 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32572747
   |texte=   Immobilized atmospheric particulate matter on leaves of 96 urban plant species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32572747" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020